Effects of propofol on proliferation and anti-apoptosis of neuroblastoma SH-SY5Y cell line: new insights into neuroprotection.
نویسندگان
چکیده
Recently, it has been suggested that anesthetic agents may have neuroprotective potency. The notion that anesthetic agents can offer neuroprotection remains controversial. Propofol, which is a short-acting intravenous anesthetic agent, may have potential as a neuroprotective agent. In this study, we tried to determine whether propofol affected the viability of human neuroblastoma SH-SY5Y cells by using the MTT assay. Surprisingly, our results showed that propofol at a dose of 1-10 μM could improve cell proliferation. However, at higher doses (200 μM), propofol appears to be cytotoxic. On the other hand, propofol could up-regulate the expression of key proteins involved in neuroprotection including B-cell lymphoma 2 at a dose range of 1-10 μM, activation of phospho-serine/threonine protein kinase at a dose range of 0.5-10 μM, and activation of phospho-extracellular signal-regulated kinases at a dose range of 5-10 μM. Similarly, we demonstrate that propofol (10 μM) could elevate protein levels of heat shock protein 90 and heat shock protein 70. Therefore, we choose to utilize a 10 μM concentration of propofol to assess neuroprotective activities in our studies. In the following experiments, we used dynorphin A to generate cytotoxic effects on SH-SY5Y cells. Our data indicate that propofol (10 μM) could inhibit the cytotoxicity in SH-SY5Y cells induced by dynorphin A. Furthermore, propofol (10 μM) could decrease the expression of the p-P38 protein as well. These data together suggest that propofol may have the potential to act as a neuroprotective agent against various neurologic diseases. However, further delineation of the precise neuroprotective effects of propofol will need to be examined.
منابع مشابه
Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis
Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...
متن کاملEvaluation of the Anti-apoptotic and Anti-cytotoxic Effect of Epicatechin Gallate and Edaravone on SH-SY5Y Neuroblastoma Cells
Introduction: Parkinson disease (PD) is the second most common neurodegenerative disease affecting older individuals with signs of motor disability and cognitive impairment. Epicatechin (EC) and edaravone have neuroprotective effects most probably due to their antioxidant activity; however, a limited number of studies have considered their role in PD. This research aimed at investigating the ne...
متن کاملPropofol increases µ-opioid receptor expression in SH-SY5Y human neuroblastoma cells.
The aim of the present study was to explore the effect of propofol, a intravenous sedative-hypnotic agent used widely in inducing and maintaining anesthesia, on µ-opioid receptor (MOR) expression in a human neuronal cell line. SH-SY5Y human neuroblastoma cells were treated with various concentrations of propofol (1, 5, 10 or 20 µM) for different l...
متن کاملNeuroprotective effects of Salvia aristata Aucher ex Benth. on hydrogen peroxide induced apoptosis in SH-SY5Y neuroblastoma cells
Background and objectives: Oxidative stress is implicated in the neuronal damage associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotropic lateral sclerosis and cerebral ischemic stroke. The present work was designed to establish the neuroprotective effects of Salvia aristata extract on H2O2-induced apoptosis in human dopaminergic ...
متن کاملRheum turkestanicum Janisch Root Extract Mitigates 6-OHDA-Induced Neuronal Toxicity Against Human Neuroblastoma SH-SY5Y Cells
Background and Objective: Rheum turkestanicum (R. turkestanicum) has been known to reduce inflammation and has antioxidant properties such as protective effect in neurons. This study aimed to determine the effects of R. turkestanicum on neuronal toxicity induced by the pro-parkinsonian neurotoxin 6-hydroxydopamine (6-OHDA) in neuroblastoma SH-SY5Y cells. Materials and Methods: MTT and DNA frag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 1384 شماره
صفحات -
تاریخ انتشار 2011